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Abstract
Satellite remote sensing (RS) and machine learning can be combined to develop methods for
measuring the impacts of climate change on biomass and agricultural systems. From 2015 to 2023,
we applied this approach in a critical earth observation-based evaluation of the Irrigation and
Water Resources Management component of the Millennium Challenge Corporation’s Senegal
Compact. This project, funded by the United States Agency for International Development
(USAID), was implemented in the Senegal River Valley from 2010 to 2015. Utilising these
techniques, we successfully mapped rice cultivation areas, deciphered cropping practices, and
analysed irrigation systems responses to different climatic conditions. A marked increase in
cultivated rice area was found particularly in regions targeted by the project intervention. This is
despite prolonged drought conditions which underscores a significant climate adaptation benefit
from these irrigation works. We observed a notable dip in rice cultivation area in 2020, possibly
due to the COVID-19 pandemic, followed by a recovery to pre-pandemic levels in 2023, likely
aided by previously funded USAID’s socio-economic resilience programmes in the region.
Economic analysis of increased rice yields in the region translates to approximately US$ 61.2
million in market value since 2015, highlighting the economic returns from the project investment.
Both the RS data and ground audits identify issues regarding post-project deterioration of
irrigation infrastructure, emphasising the need for long-term maintenance of irrigation
infrastructure to support climate adaptation benefits arising from irrigation. With a focus on crop
irrigation, our findings stress the critical role of climate adaptation interventions for maintaining
agricultural productivity in the face of adverse climate shocks. It further highlights the necessity of
continuous investment and maintenance for ensuring climate resilient agrifood systems.

1. Introduction

The United Nations 2030 Agenda for Sustainable
Development emphasises sustainable agriculture
as key to eradicating hunger and ensuring food
security—SDG2 (UN General Assembly 2015).

Climate change poses a major threat to the
productivity of agriculture and food systems from
global to local levels. Hence, there are significant
efforts and investments underway to transition to
more climate resilient agrifood systems that are
future-proofed against climate change stresses. Our
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definition of resilience encompasses the inherent abil-
ity of social, ecological, and economic systems to
effectively manage and adapt to climate-related haz-
ards, disturbances, or trends, while simultaneously
preserving their potential for adaptation, learning,
and transformation (Pörtner et al 2022). However,
despite significant financial investments in climate
adaptation measures, assessing the effectiveness and
long-term impact of climate adaptation interventions
and expenditures remains challenging. Traditional
approaches often rely on expensive on-site surveys
(with sparse site sampling) which is limited in scope
and subject to bias. Satellite remote sensing (RS),
with its frequent and extensive data collection, can
provide a more objective and efficient alternative for
measuring effectiveness of climate adaptation efforts
in agricultural and food systems.

Located in the subtropical Sahel on the south-
ern fringes of the Sahara Desert, the Senegal River
Valley (SRV) is vulnerable to climate change-induced
southward creep of the seasonal pulse of desertific-
ation replacing the semi-arid climate (Harris et al
2020, UNFCCC 2022, World Bank 2023). The SRV
is part of the West Africa Senegal River Basin (SRB),
which spans Senegal, Guinea, Mauritania, and Mali.
Dam construction and associated waterflow manage-
ment programmes have been the dominant inter-
vention strategy to build resilience to water stresses
in this region of the western Sahel (figure 1), as
the wider region is being impacted by increased fre-
quency and intensity of temperature, drought, and
flooding stresses arising from climate change.

The SRB’s 25 transboundary watercourses are
managed by the river basin development author-
ity, ‘Organisation pour la Mise en Valeur du Fleuve
Senegal’ (OMVS; Senegal River Basin Development
Authority), which is governed by Guinea, Mali,
Mauritania, and Senegal. This organisation promotes
‘coordinated water and energy development’ (Okidi
2011) and manages the risk associated with large-
scale water projects, including the construction of
multipurpose dams facilitating year-round irrigated
agriculture. Currently, OMVS is shifting towards
irrigated rice production for domestic consump-
tion to ease current severe foreign exchange defi-
cits. However, evaluations indicate that the tradi-
tional rain-fed rice system is unsustainable, with
irrigation schemes often abandoned unless renewed
investment is available (Comas et al 2012). The
OMVS has also faced criticism for its limited pub-
lic engagement in decision-making (Sène et al 2007).
Irrigation schemes across sub-Saharan Africa have a
long history of under delivering on promised infra-
structure, with many showing no noticeable impact
over 60 years (Higginbottom et al 2021). Redicker
et al (2022) further highlight the ineffectiveness of
irrigation schemes (as high as 83% of schemes)
across west Africa for many reasons, including not
including the livelihood goals of smallholder farmers.

Higginbottom et al (2023) note sub-Saharan Africa’s
modest gains in agricultural productivity despite
numerous irrigation schemes, criticizing the histor-
ical laissez-faire agricultural policy.

From 2010 to 2015, the United States Agency
for International Development (USAID)-funded
MillenniumChallengeCorporation (MCC) interven-
tion project, in collaboration with the Government of
Senegal, invested approximately US$ 540 million in
the Senegal Compact targeted to the SRVdelta region.
Notably, the US$ 170 million Irrigation and Water
Resources Management (IWRM) project under the
Compact aimed to enhance agricultural productivity
by upgrading the irrigation system in key locations
across the SRV (Millenium Challenge Corporation
2009). Given the reliance of high productivity rice
cultivation on effective irrigation systems (Styles
and Marino 2002, Okada et al 2008, García-Bolaños
et al 2011), the MCC IWRM investment focused on
repairing and refurbishing existing irrigation canals,
and building new ones where strategically needed,
with the goal to enable cultivation of more than one
rice crop per year.

After the project’s completion in 2015,
Mathematica (a research and data analytics company)
were contracted to conduct follow-up audits, com-
pleting their final evaluation of the project’s effect-
iveness in 2021 Harris et al (2021). Their project
assessment combined questionnaires, local authority
engagement, and a RS analysis from 2018 to 2020.
The Mathematica audit report indicated that while
the planned annual crop yield targets were not met
(i.e. achieving 30 000 ha of rice cultivation in the
dry season), the intervention generally succeeded
in increasing overall rice production and yields in
the targeted region (Coen et al 2019, Harris et al
2021). However, their audit report also notes that
these improvements were not fully sustained after
the project intervention, where establishing accurate
and reliable quantitative metrics to determine net
rice productivity changes over time proved challen-
ging, particularly for measuring cultivation area and
crop yield per unit area. TheMathematica audit team
acknowledged the lack of precise actionable metrics
to accurately measure change against baselines and
therefore the overall impact and cost-effectiveness of
the project intervention (Harris et al 2021).

In this study, we take a novel approach to provide
a new analysis of the productivity and extent of
rice cultivation in the IWRM intervention and wider
region. We particularly focused on the successful cul-
tivation of rice in the local dry season as this would
correspond to successful irrigation and crop practices
supporting increased annual yield in the interven-
tion area.We expand uponMathematica’s RS analysis
by including additional data sources and adopt more
sophisticated methodologies incorporating decision
tree classifiers and timeseries-to-image algorithms.
To more accurately measure rice growing systems
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Figure 1. Key milestones for water management in the Africa Senegal River Basin (SRB) from 1970 to 2023. Construction to
commencement is highlighted with translucent orange lines.

we make use of optical, infrared, and radar data to
analyse rice paddies on the ground, beginning in
2015 at the end of the project and ending in 2023.
We provide a more rigorous, cost-effective and inde-
pendent assessment of the Senegal Compact project’s
efficacy using freely available earth observation (EO)
data up until and beyond that covered by the final
Mathematica published audit.

1.1. Region of interest
The MCC intervention focused on two key areas in
the SRV. The primary area, the SRV delta, spans
788.63 km2, extending from Saint–Louis to Rosso
on the Mauritania border. The secondary area,
Ngalenka, covering 400 ha, is located near Podor.
However, Ngalenka was excluded from this study’s
results due to its small size and the cessation of rice
cultivation post-2018, suggesting a long-term failure
of the dry-season rice intervention.Harris et al (2021)
notes that ‘In the Podor Activity area, maintenance of
the canals and pumps is generally good, according to
co-operative leaders and SAED, but a structural prob-
lem limits the use of the perimeter to the rainy season
only’.

In the SRV, rice is the predominant crop, sup-
ported by an extensive irrigation canal network
(see figure 2). Our primary region of interest was
those areas previously identified by the MCC as
being directly impacted by the planned IWRN works
between 2010–2015, which are delineated in figure 2.
Additional comparative regions were identified as
described in section 3.2.

2. Data

2.1. Satellite data
We combined optical and infrared data from the
Landsat-8 mission and SAR data from Sentinel-1A

to analyse rice production. Data was retrieved from
Google Earth Engine (GEE; Gorelick et al 2017).
Cloud pixel thresholds were set at 20% for Landsat-
8 data (LANDSAT/LC08/C02/T1_L2). Seasonal com-
posites were created using median values fromMarch
to June (Omar Ndaw et al 2020) and various veget-
ative and water indices were calculated, as listed in
table 1.

Sentinel-1A data provided VH and VV polar-
isation composites. To analyse crop cultivation and
cropping patterns, MODIS EVI, Landsat NDYI, and
Sentinel-1A VH data were extracted from from
USGS MOD13Q1 V6.1 (MODIS/061/MOD13Q1),
USGS Landsat 8 Level 2, Collection 2, Tier
1 (LANDSAT/LC08/C02/T1_L2) and VH from
Sentinel-1A (COPERNICUS/S1_GRD) respectively.
Time series data for each pixel were extracted based
on the cultivated mask defined in section 3.4.

2.2. Meteorological data
Meteorological data, crucial for analysing climatic
stress (see section 4.4), included precipitation, air
temperature, and evapotranspiration. Precipitation
data was sourced from CHIRPS (Funk et al 2015),
air temperature from Copernicus Climate Change
Service ERA5 Daily Aggregates, and evapotranspir-
ation from FLDAS (McNally 2018), all accessed
through GEE. Given the large pixel size of this data,
we averaged over the entire delta to get a single value
per parameter per timestep.

2.3. Training data
Training data for the SRV delta region was chosen
from the highest available resolution imagery which
is Sentinel-2 at 10 m, and is classified into four
categories: rice, bare soil, water, and wetlands. Rice
crops were manually labelled with context from Sylla
et al (2023a, 2023b). This was possible due to the
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Figure 2.Map showing regions of interest described in section 3.2.■: Intervention Delta,■: Middle Delta,■: Northeast Delta,
■: North Delta,■: Northwest Delta,■: East Mauritania,■: West Mauritania. Irrigation networks from OpenStreetMaps are
highlighted in various colours across the map (rivers—magenta; streams—blue; canals—green; drainage—orange;
ditches—cyan).

Table 1. Vegetation and water indices that are used in the analyses.
SWI is described in more depth in Tian et al (2017),
Bauer-Marschallinger et al (2018).

Index Formula

NDVI (NIR− Red) / (NIR+ Red)
MNDWI (Green− SWIR1) / (Green+ SWIR1)
LSWI (NIR− SWIR1) / (NIR+ SWIR1)
MSAVI (2×NIR+ 1−

√
(2×NIR+ 1)2 −

8(NIR−Red))/2
EVI 2.5(NIR−RED)/(NIR+ 6×RED− 7.5×

BLUE+ 1)
NDYI (Green—BLUE) / (Green+ BLUE)

SWI SWIT (tn) =
∑n

i SSM(ti)e
− tn−ti

T∑
n
i e

− tn−ti
T

widespread growing of rice in the region. A total
of 292 polygons (78 553 pixels) were identified for
2020, with a 14.6% rice constituency. To address
class imbalance, random sampling and class weight-
ing were applied during model training.

For training and testing the convolutional neural
network (CNN), 8000 time-series were hand labelled
to be either no crop (fallow), double cropped (two
peaks), dry cropped (early peak) or rainy crop (late
peak) from the rice cultivationmasks output from the
previous step in the model (see section 3.5).

3. Methods

Machine learning (ML) is pivotal in RS data ana-
lysis, automating feature extraction and improving

land cover classification and environmental variable
prediction (Maponya et al 2020, Talukdar et al 2020,
Wang et al 2022). ML techniques, including deep
learning with time series images, have enhanced
accuracy in cropland classification (Dong et al 2015,
Tariq et al 2023).

These methods, described below, involve com-
positing satellite data, developing an ensemble boos-
ted trees model, and employing a hidden Markov
model (HMM) for post-processing. The full schem-
atic of data processing is outlined in figure 3.

3.1. Compositing
Using GEE, we composited median full-resolution
Landsat-8 optical and infrared data and Sentinel-1A
VH and VV backscatter data during the dry sea-
son (1 March to 30 June annually from 2015 to
2023), a critical period for rice growth in the region
(Omar Ndaw et al 2020). For SAR data, sensitive to
water and vegetation changes, we includedminimum,
median, and maximum VH and VV composites for
classification.

3.2. Control regions
To contextualise the SRV intervention’s impact, six
regions outside the InterventionDelta were identified
as control areas. These include various SRV regions
as well as areas in Mauritania, which were selected
to provide a comprehensive comparison and under-
stand regional variations in agricultural practices
(García-Bolaños et al 2011). Figure 2 outlines these
regions.
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Figure 3. Full visual description for our land use classification and cropping intensity model. Each pixel from each composite goes
through the XGBoost model. These multi:softprob outputs are used as starting probabilities for the HMMmodel, which
determines the most likely hidden states for each pixel sequence over the nine years of observation. These generated cultivated rice
masks (per year, yt) are used to mask EVI, NDYI, and VH time-series, which is smoothed. These time-series are used to create
images through a Gramian Angular Summation method, which can be used to classify cropping type (double, dry, wet, fallow) for
each year.

3.3. Land-use classification
Recognising the limitations of global land use
products in sub-Saharan Africa (Potapov et al 2022,
Kerner et al 2023, Nakalembe and Kerner 2023),
we developed a specific XGBoost model (Chen and
Guestrin 2016) for rice cultivation classification,
trained with the data mentioned in section 2.3. We
used the Python packages SCIKIT-LEARN (Pedregosa
et al 2011) and XGBOOST (Chen and Guestrin 2016)
to achieve this. The model’s objective was set to
multi:softprob for pixel classification, with hyper-
parameters optimised through cross-validation. A
stratified K-fold cross-validation was used in this case
combined with a randomized grid search. For our
cross-validation a traing-test split of 80-20 was used.
This approach was chosen for its relevance to the spe-
cific environmental and agricultural conditions of the
region.

In assessing model performance, we prioritised
precision, recall, and the f1-score over accuracy alone,
as accuracy can overestimate performance, particu-
larly in cases with large class sizes like bare land and
wetlands (Powers 2020). Our findings indicated an
overall accuracy of 96%, with a precision of 85%, a
recall of 99%, and a f1-score of 92% for rice clas-
sification. This high recall rate suggests a tendency
towards false positives in rice identification, rather
than false negatives. Consequently, our land-use clas-
sification provides an upper bound for rice produc-
tion in each region, highlighting areas where rice
cultivation is most likely, albeit with some overes-
timation. We chose a model with higher recall over
precision as our resulting agricultural mask will be
refined further using a HMM (detailed in section 3.4)
with this output being used to analyse cropping prac-
tices in section 3.5. While we are confident in the
results of this model for the SRV, we would be less
so in non-arid climates (i.e. some of the largest rice
producing regions are grown in tropical and sub-
tropical climes).

3.4. HMM
HMMs are powerful tools in time series analysis,
often used in areas like natural language pro-
cessing and biomedical applications. A HMM inter-
prets sequences of observations by inferring hid-
den states and transition probabilities between
them. In our study, we utilised a HMM to detect
improbable class transitions and ensure consist-
ent temporal progressions in land cover classifica-
tions (Abercrombie and Friedl 2016, Higginbottom
et al 2023). This model was applied to each pixel in
our dataset for the years 2015 to 2023, each con-
taining 9 data points. Starting probabilities were
derived from our classification model’s output,
with transition probabilities set at 0.1, following the
approach in both Abercrombie and Friedl (2016) and
Higginbottom et al (2023).

3.5. Cropping intensity analysis
Historically, SRV agriculture primarily involved wet
season cropping of rice from October to February. To
understand the dynamic aspects of agricultural prac-
tices, we employed a time series-to-image algorithm
to investigate this further. For pixels within the clas-
sified dry season crop mask, we used time series data
from MODIS EVI, Landsat 8 NDYI, and Sentinel-1
VH, converting them into 3-channel images using the
Gramian angular field summation (GAFS) algorithm.

GAFS transforms time series into a matrix of
temporal correlations. This involves scaling the time
series, converting them to polar coordinates, and
then computing the cosine of the sum of angles.
PYTS (Faouzi and Janati 2020) was used for this
transformation.

Subsequently, a supervised CNN classified these
images into categories: fallow rice, single crop dry
rice, single crop wet rice, or double crop rice. Our
focus remained on the dry season rice cultivation,
aligning with the intervention’s goal to enhance dry
season agricultural productivity.
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Figure 4. Sentinel-1 smoothed SWI for rivers, streams, canals and drainage in the Intervention Delta region since 2015. Larger
values here indicate higher water levels. Bar chart shown along the bottom in purple is the measured precipitation levels in the
region for each month.

The CNN architecture (displayed in figure 3) uses
the re-scaled vegetative indices images as input, and
throughmultiple Conv2D and MaxPool2D layers with
ReLU activation, achieves 4 output nodes correspond-
ing to our cropping classes. To avoid over-fitting we
utilised dropout layers and L1 regularisation. The
model achieved an accuracy of 98% when tested on
2000 random samples. The Python package KERAS

(Chollet et al 2015) was used to create and train this
model.

3.6. Irrigation analysis
To map and characterise the total irrigation com-
ponent of the SRV area, we extracted any objects
labelled as waterways by OpenStreetMaps (OSM;
OpenStreetMap contributors 2017). These waterways
can be seen in figure 2. This included natural water-
ways such as rivers and streams, as well as man-made
waterways like canals and drains. We applied a 20 m
buffer to streams, canals and drains and a 50 m buf-
fer to the rivers. The Sentinel-1 water index (SWI;
Tian et al 2017) was then used to analyse water levels
at these loci. This index was calculated after apply-
ing the Analysis-Ready-Data framework for Sentinel-
1A backscatter in the GEE Python API (Mullissa et al
2021). This pre-processes the data by applying bor-
der noise correction, speckle filtering and radiomet-
ric terrain normalization. Finally, the SWI data was
exported for each water-body type and each region
outlined in figure 2 from 2015 to 2023.

3.7. Climate stress analysis
Identifying climatic stress events within the SRV
was implemented by quantifying precipitation,
air temperature and evapotranspiration anomalies
using archived meteorological data. Rainfall data
(UCSB-CHG/CHIRPS/PENTAD) was aggregated into an
annual sum for the years 1983–2023 and then the
rainfall anomaly index, developed by Van–Rooy
(Costa and Rodrigues 2017) was calculated. These
values were then normalised so that -1 indicated the
driest conditions based on the last 40 years, while
the positive values indicated above-average rainfall.

A slightly adapted formula was applied to evapo-
transpiration (FLDAS) and temperature (ERA5 Daily
Aggregates) datasets to create a time series of annual
anomalies for all three primary potential climate
shock indicators. An additional metric was included
for temperature to capture the extremes where we
calculated the annual percentage of days above 30 ◦C,
as this information may not have been well represen-
ted by a deviation from the historical mean if paired
with exceptionally low temperatures. These values
were then normalised from −1 to 1, with the negat-
ive values indicating drought conditions such as low
actual evapotranspiration and increased temperature
anomalies. The results are plotted in figure 4.

4. Results

4.1. Identification of absolute areas under rice
cultivation 2015–2023
In figure 5 we present the total cultivated rice area for
each of the regions delineated in figure 2 as determ-
ined from our HMM model for the years 2015–
2023. An example output for the year 2019 is shown
in the top panel of figure 6. The data highlights
the intensified activity in the Intervention Delta—
which covers areas impacted by the MCC work—
yielding conspicuous year-on-year improvement in
cultivated area to 2020, with a subsequent drop. West
Mauritania and North West Delta show significant
decreases post 2020, and the Middle Delta region
expanding substantially between 2015–2020, before
stabilising around 5000 ha yr−1. Relative perform-
ances within each region compared to their 2015
baseline are plotted in figure 7. The transforma-
tion of the Middle Delta region post-2015 is strik-
ing, evolving from a largely fallow area to one of
increasing cultivation, thanks to investment from the
public-private partnership: ‘le Projet de Promotion du
Partenariat Rizicole dans le Delta’ (3PRD; Sylla et al
2023b).

Other trends in figure 7 include the marked
decline in rice production area in theWestMauritania
and the North-West Delta regions starting from 2021,
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Figure 5. Output of the HMMmodel for absolute rice areas
per region of interest between 2015–2023.

with the decrease in 2023 for both particularly stark
in comparison to performances of the other regions.
Notably, in West Mauritania, the overall rice produc-
tion is modest relative to the region’s size, mean-
ing that even minor changes can significantly impact
the area’s production-to-size ratio, as depicted in
figure 7. Perhaps most interestingly is the trend asso-
ciated with the InterventionDelta region whose func-
tional form essentially mirrors that of the North
Delta, North-East Delta and East Mauritania regions,
with a consistent increase in rice cultivation up until
2019/2020, with a subsequent drop in 2021/2022
and then recovery from 2022 onward, with East
Mauritania’s recovery particularly noticeable from
2021. The Intervention Delta displays a recovery that
is acceptable in comparison to others, although not as
impressive as that of East Mauritania. Figure 6 shows
a stark divergence of rice production among all areas
in 2023, while the Intervention Delta remains stable.
However, this year is 8 years after the conclusion of the
intervention and so it is difficult to conclude the reas-
ons for this. Additionally, the Intervention Delta is
the largest region and had the most rainy season crop
in 2015, possibly skewing this figure. The recovery
of East Mauritania is noteworthy however, and per-
haps policies and practices implemented here could
be used in Senegal.

It is worth noting in figure 7 that most regions
in the SRV outperformed the regional trend of rice
grown (SAED 2024), but not the national trend
reported by the FAO (FAOSTAT 2024). This could be
due to differences in regional and national trends. It
is possible that while the northern region of Senegal
(the SRV) increased rice production, that the other
primary rice growing region in Senegal (primarily
across the south of the country)was acceleratingmore
rapidly in production levels, however we have not
verified this hypothesis.

4.2. Rice cropping practices 2015–2023
Using the output generated from our trained CNN
classifier allowed us to characterise regional rice crop-
ping practices over the same temporal baseline, as

Figure 6. Top: Output from rice classification model for the
year 2019, zoomed into the Central and Intervention Delta.
Bottom: Number of cropped years over previous 9 years
from 2015–2023. Darker regions show heavily cropped land
in the last decade.

Figure 7. Output of HMM for rice area per region of
interest normalised to the first year of analysis, 2015. Note
the extended discontinuous y-axis in the top panel of the
figure. Grey points show national statistics of cropped area
over the same period from SAED and FAOSTAT (FAOSTAT
2024, SAED 2024).

shown in figures 8 and 9. Figure 8 shows the out-
put for 2019 for a central portion of the SRV. Note
MODIS resolution (250 m) was used for this analysis
due to computational resource constraints. We can
see that double cropping dominated during this year
and region. Whilst generally mirroring trends visible
in figure 6, the data in figure 9 allow us to articu-
late how effective the impact of the MCC works were
within the InterventionDelta region post-completion
from 2015 to 2023. A priority for the MCC project
was the greater frequency of cultivation within the
Intervention Delta. The data as presented for this
region shows how cultivation patterns did indeed
evolve from 2015–2019, with a gradual increase in
double, dry and rainy season cropping, a distinct
change in 2020 to fallow status, with rainy season cul-
tivation dominating beyond 2021, and some recovery
of dry season cropping coincident with consistent but
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Figure 8. Central delta plot showing the cropping calendar
type for 2019. Types of cropping include double (green),
single (dry; blue or rainy; grey), and fallow (no crop;
yellow).

Figure 9. Areas of rice cultivation per year per cropping
practice measured in km2. Note that double cropped areas
here are not double counted in the dry or rainy season crop.

lower levels of double cropping than had been the case
in 2019 where year-on-year increases were apparent.
An examination of the other region annual patterns
shows little or no similarity to the trends apparent for
the Intervention Delta region, other than a perturba-
tion common to all between 2019–2020.

4.3. Precipitation and irrigation trends in the
Intervention Delta 2015–2023
In figure 4 we plot the composite Sentinel-1 Water
Index (SWI) time-series for rivers, drains, streams
and canals identified within the Intervention Delta
region, with the precipitation data from CHIRPS
superimposed. Each year the canal SWI value peaks at

the beginning of each dry season (March) sometime
after the precipitation peak evident each rainy sea-
son, primarily a consequence of dam management,
as water levels are kept low at this time to mitig-
ate flood risk (Sall et al 2020). These data indic-
ate a systematic decrease in SWI for all water bod-
ies over this 8 year period, and a lack of apparent
precipitation between 2016–2020 compared to other
years. However the SWI measure for the canal net-
work within the Intervention Delta manifests a more
consistent relative temporal signature. Note that areas
with increased SWI are not necessarily indicative of
increased water volume. This is pronounced with the
lack of dredging described earlier. Build-up of silt on
water beds could cause over-estimation of water levels
in a waterway. Our calculations of trends of water
levels are most accurate assuming waterway volumes
stay consistent.

4.4. Climate anomalies in precipitation and
evapotranspiration in the SRV
In figure 10 we display a bar chart of the normalised
climate anomalies in precipitation and evapotran-
spiration for the SRV from 1983–2023, which cap-
ture climatic trends and in particular drought stress
events that would be expected to impact regional agri-
cultural production. One of the most severe droughts
in recent years occurred in 2014 and was quickly fol-
lowed by four successive years of drought conditions
starting in 2016 and breaking with a typical rainy
season in 2020. This provides important contextual
information on the background climate behaviour
while analysing the trends in rice cultivation in the
SRV. We highlight the acceptable performance of the
region given these harsh climate conditions. However
this is a clear warning to food security in the region as
climate conditions continue to worsen.

4.5. Technical and data validation
To validate our labelling of rice for our training data,
the data was labelled by a team member, reviewed by
2 other technical expert team members, and finally
reviewed by a agricultural expert on sub-Saharan
agriculture. Additionally, our model results on land
use classification are reported in section 4.1. We
define our model performance metrics for XGBoost
which fulfilled our expectations as regards perform-
ance. These full metrics are supplied as supplement-
ary data. Additionally, we compare our result to the
most recent ESA 10 m WorldCover map for 2021.
With a total overlapped cultivation area of 386 km2,
ourmodel has an accuracy of 69%, a precision of 55%,
recall of 87% and an f1-score of 68%, assuming ESA
Worldcover is entirely accurate. The large disagree-
ment is primarily with the West Mauritania region,
which ESA Worldcover labels as cropland. However
it is clear from RS data from 2021 that this is almost
entirely fallow for 2021, emphasising the need for bet-
ter temporal crop classifications.
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Figure 10. Normalised climate anomalies in precipitation and evapotranspiration. Vertical regions in green show local (dotted)
and Sahelian (hatched) scale droughts in the region. Droughts coincide with low precipitation and low evapotranspiration.

Unfortunately, measuring the HMM model per-
formance is not as straightforward. This is even more
pronounced with the cropping intensity model. Our
training data for this was labelled by hand by a tech-
nical expert. This involved labelling 2 thousand pixels
on a yearly basis to analyse their seasonal phenology.
We did not validate our labelling of waterways from
OSM beyond measuring the actual water content of
the canals in Sentinel-1/2 using NDVI, NDWI, and
SWI. We highlight the need for better geospatial local
open data of an agricultural nature by national insti-
tutions below in section 5.

To validate our climate analysis, we reviewed doc-
umented extreme climate events over the past four
decades from sources like FEWSNET, ReliefWeb, and
the FAO (FEWSNET 2014, ReliefWeb 2018, 2020).
This review confirmed both local and Sahelian scale
droughts visible in our data (highlighted as hatched
regions in figure 10). Further details on other climate
risks, such as storms, floods, and epidemics, are pub-
licly available at World Bank (2023).

5. Discussion

A holistic view of our AI-enabled satellite RS analysis
combined with the ground truth climate context of
the region allowed us to assess the long term impact
of the IWRM component of the USAID-funded
MCC’s Senegal Compact. This provides evidence of
a successful irrigation management system, albeit not
restricted to the Intervention Delta region. We deem
success as the relative stability of rice cropping given
the local drought over four years directly preceding
a global pandemic. However, the lack of continued
dredging practices in the region could have effected
our measure of water content in the canals, effect-
ively causing our results to be a best case scenario
as the canal bed rises/becomes blocked. Therefore
irrigation management in this case would be simply
adequate given the background scenario. We point
out in our results that the SRV outperformed regional

rice cultivation trends, but not national ones. It is also
worthy to note the FAO report a decline in national
rice yield per area, yet an overall increase in cultiv-
ated area and rice production. This could indicate
either recent irrigation practices are having a positive
impact, or conversely, newly added rice cultivation is
of low quality, thereby producing very low yields.

From our analysis, it is clear that seasonal land
use classifications/labels are required to make accur-
ate assessments of practices in the region. Using a
temporally static crop mask which is out of date by
a single season leads to miscalculation of total crop
production.While this can be achieved through RS as
demonstrated in this paper, it underscores the need to
strengthen national institutions to effectively address
record deficiencies for agri-environment schemes.
Integrating RS techniques with significant improve-
ments of local agri-climate data fromnational institu-
tions offers the best path forward for the implement-
ation of responsive policies at scale to foster climate-
resilient agrifood systems.

Redicker et al (2022) has shown that most (86%)
irrigation schemes across sub-Saharan Africa have
been under-performing over several decades, with
most proposed schemes over-promising results that
have not been shown tomaterialise post-intervention.
Our results show the longevity of the MCC interven-
tion is trending in the wrong direction, although dis-
entangling the success of irrigation intervention from
climate degradation is a difficult and nuanced prob-
lem. As mentioned previously, planned sustained
maintenance of irrigation works that meshes with
local smallholders and fits with their livelihood goals
is essential. It is imperative both economically and
socially we develop methods to quantify and disen-
tangle the negative effects of climate change and any
positive effects of interventions.

Mateos et al (2010) highlights the need for
appropriate sustained maintenance procedures for
irrigation canals in smallholder rice farming (stud-
ied nearby, upstream in Mauritania), rather than
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sporadic rehabilitation, highlighting some issues with
small-scale irrigation. We see limited success of
this large-scale intervention, especially monetarily.
Adams (1991) discussed the predominant issues with
large-scale irrigation projects. García-Bolaños et al
(2011) show using ground data that nearby irriga-
tion projects upstream on the Mauritania side of the
Senegal River show vastly different rates of deterior-
ation, with a lack of water delivery and system main-
tenance leading to low productivity. It is clear from
our results, analysed at a much larger scale, that this
variation could exist, but is lost at this scale. Generally,
the regions that produced the most rice at the begin-
ning of our analysis, continued to do so. For an in
depth economic analysis on the rice value chains in
Senegal we direct the reader to Miklyaev et al (2017).

Any resilience to climate stress and shock events
from this investment can most likely be attributed to
the hydrological infrastructure—the Manantali and
Diama dams—which were put in place to artificially
control flooding of the delta, provide low flow sup-
port in the dry season, and prevent seawater intru-
sion (DeGeorges and Reilly 2006). On a more local
scale, the sluice gates at Ronkh regulate the flow of
water into the irrigation canal network (Morén and
Andersson 2014) whose effectiveness in supporting
local crop production is dependent on regular main-
tenance, such as dredging.

All regions experienced a significant perturbation
of cultivation practices in 2020/21 - this was inde-
pendent of climatic conditions or water availability as
is clear from the data. The most likely cause was the
impact of the COVID-19 global pandemic disrupting
supply chains critical to supporting agricultural activ-
ities in the SRB area, the processing and sale of any
resulting crops, not tomention the healthcare implic-
ations for the local population (Diarra et al 2023,
El Bilali et al 2023, Jha et al 2023). This is suppor-
ted by the increase in fallow cropping classification
in figure 9. However, previously funded programmes
prior to the pandemic had aimed at building sus-
tainable agricultural communities in the same region.
For instance, USAID’s Feed the Future Senegal: Naatal
Mbay (2011–2015) and Finding the Best Fit: Nataal
Mbay (2015–2019) focused on promoting the devel-
opment of value chains. These programs emphasized
socio-economic resilience for communities depend-
ent on the cultivation of irrigated rice in the SRV
(USAID 2016, Manfre 2022). Such initiatives were
predicted to lay the groundwork for a strong recov-
ery in the 2021 season (Latané et al 2021). Note these
did not take place in the SRVbut elsewhere in Senegal.
We did not see sufficient evidence for a bounce back
in 2021 with less total productive rice cropped area
in 2021 (392k ha) than in 2020 (397k ha) across the
entire region.

However, over 2021–2023 there is RS evidence
for a general recovery for all regions in the central
SRV, with the Intervention Delta stabilising overall

rice production to the peak level in 2017. In terms
of cropping practices, the data indicates that within
this region, double cropping and dry season cropping
have yet to fully recover from their pre-2020 peaks,
with a greater reliance on rainy season production.
The decline in total dry season cropping from 2020
(dry cropped and double cropped areas) is of relev-
ance with regard to the increasing lack of funding
available for maintaining the irrigation canals, with
the total dredged kilometres dropping from 102 km
in 2016 to 31 km in 2020 (Harris et al 2021). The
decreasing trend in maintenance is reflected in the
persistent decline in SWI of the irrigation canal net-
works (figure 4) and is consistent with a significant
decrease in flow reported by water user association
members (Harris et al 2021), indicating that sufficient
access to irrigation water is becoming more limited.

While we examine some trends in this work, a
more causal analysis of the link between climate,
biotic factors and rice production in this regionwould
help in deciphering the most important factors, it is
however beyond the scope of this study. This would
provide critical decision making factors for organisa-
tions and farmers on the ground trying to sustain and
enhance rice production in the SRV.

6. Conclusion

We present an EO based analysis of rice cultivation
practices in the SRV between 2015–2023 using both
Landsat 8 and Sentinel-1A data and ML methodolo-
gies to identify rice growing regions, determine rice
cropping practices and assess the impact of irriga-
tion over this time. Our motivation for this study
was to assess the long term performance and local
impact on rice production in the regions targeted by
the IWRM work component of the USAID-funded
MCC Senegal Compact. The methods used in this
research offer a cost-effective solution for monitoring
and evaluating large interventions by minimizing the
need for extensive field data collection. This approach
aids in strategically targeting and prioritizing invest-
ments, thereby enhancing decision-making processes
related to resource allocation, ultimately maximizing
the impact on smallholders’ livelihoods.

We confirm a distinct increase in cultivated rice
area across several designated regions within the
SRV immediately post project completion, despite the
wider region suffering long term drought conditions
over the same period. An analysis of contemporary
climatic data substantiates both a decline of local pre-
cipitation and lowering river-associated SWI, imply-
ing a clear climate adaptation benefit based on com-
munity irrigation management. All regions exhibited
a negative perturbation in rice cultivation in 2020,
likely a consequence of the COVID-19 pandemic, but
the central SRV regions in particular all recovered to
their pre-COVID levels by the conclusion of our study
in 2023. It is very likely thatUSAIDprogrammes from
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2010 onward that focused on the socio-economic
resilience among these same farming communities
may have played a role in recovery.

For the IWRM intervention region, a cost to value
estimate can be deduced by taking the growth from
2015 in cropped area and assuming a yield production
rate of 5.5 tons ha−1 for Senegal specifically (Global
Yield Gap Atlas 2023, SAED 2024). We find an addi-
tional total area of cultivated rice of 37 117 ha over
the 8 years following 2015, or 4640 ha per year on
average. This potentially results in an additional yield
of 25 520 tons of rice per year from within the inter-
vention area, equal to a market value (Soullier et al
2020) of approximately US$ 5.1 million per year, or
US$ 40.8 million total, since 2015. This calculation
underestimates the monetary return since it ignores
the increase in double cropping that was observed.
Including the total increased double cropping area
(18 900 ha), from figure 9, we can increase this total
estimate to US$ 61.6 million. To provide context, this
represents approximately 13% of the total value of
rice imported into Senegal in 2021. This value estim-
ate does not include the future lifetime impact of the
intervention, nor does it include the possible decline
in rice production in the absence of the intervention.
This represents 36% of the total IWRM investment.
Excluding unforeseen events such as the COVID-
19 pandemic, and assuming similar trends into the
future, it is anticipated that the benefits of the inter-
vention will offset its cost within the next 15 years.

However, we note with some concern, evidence
of a deteriorating irrigation network from our RS
data, which is consistent with the ground truth audit
data up to 2019. Our findings clearly demonstrate
the importance of the irrigation infrastructure in sus-
taining rice production despite local climatic extreme
conditions, and highlights as a priority long-term
planning for their maintenance so as to sustain pro-
ductivity and resilience of rice cultivation for com-
munities in the SRV.

Real-time longitudinal analysis into the long-
term sustainability of climate adaptation interven-
tions (such as irrigation) through satellite RS, extend-
ing past the initial funding phase, provides the oppor-
tunity to measure climate change adaptation and
resilience of agricultural systems, in the presence
and absence of climate adaptation investments and
interventions.
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